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Abstract 
Water is an indispensable element for all living organisms for sustaining human existence, food security, societal advancement, and biodiversity. 
Due to global climate change, an increase in the shortage of fresh water supply is noticed leading to global water crisis. Traditional and non-
traditional approaches as solutions against global water crisis were reported. Applied nanotechnology might support and provide promising 
strategies to overcome many global issues like global water crisis. The suggested applied nano-solutions may include nanofertilizers, and nano-
sensors, and nano-management of wastewater. Nanofertilizers have distinguished features against global water crisis, which can increase the 
water use efficiency by cultivated crops, especially under stressful conditions. Many reports confirmed that applied nano-fertilizers can directly 
and/or indirectly save water along with an effective role of such fertilizers under water stress. This role of nanofertilizers may back to its features 
that enhance productivity of cultivated plants under water stress through physiological, biochemical, and anatomical issues. This study opens 
many windows towards the expected issues of nanofertilizers against water crisis including direct and indirect attributes. Further studies in this 
important global issue are needed especially under the global challenges with a great concern on global climate change. 
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1. Introduction  
 

No doubt that water is an essential and vital for human 
life. It is noticed that only 3% of water resources on the Earth 
is freshwater and 70% of the Earth’s surface is covering by 
water [1]. Over 2 billion people live under water scarcity, 
whereas a double of this number at least one month per year 
live under such scarcity [2]. The main areas that suffer from 
water stress may include arid and semi-arid regions, whereas 
temperate and tropical regions are vulnerable to limited water 
security under climate change [3]. It could be addressed water 
scarcity by two approaches including improving the practices 
of water use efficiency and replacing traditional sources of 
potable water by different water streams [2]. Global water 
crisis refers to the water shortage and is identified as the third 
highest risk of global concerns according to The World 
Economic Forum [4]. Thus, a significant threat to human 
development can be expected under the global water crisis 
due to increasing the scarcity of freshwater [1]. Several 
reports on global water crisis were issued from different 

regions such as Africa [5], Pakistan [1], China [6], Egypt [7], 
Iraq [8], Iran [9], India [10], and Ghana [11].  

The sector of agriculture is a very dynamic industry that 
rapidly can accept daily enormous changes, updates, and expand 
to meet the basic human demands. Mineral or chemical 
fertilizers have a fast response by cultivated crops, but along 
with excess applied of such fertilizers may leachate reaching to 
the ground water, ponds or lakes, causing damage to the aquatic 
ecosystems [12]. Therefore, alternative fertilizers are needed to 
replace, even partially, mineral fertilizers by applying organic 
fertilizers [13], biofertilizers [14] and nanofertilizers [15]. Based 
on the type of nutrients, there are several nanofertilizers 
including many elements such as iron [15], carbon [16], and 
zinc [17]. Nanofertilizers have promising features as eco-
friendly source and slow-release nutrients such as minimizing 
nutrient leaching, enhancing plant nutrition under stress, 
improving the nutrient use efficiency, promoting sustainable 
agriculture [18-23].  
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Therefore, this mini-review highlights the role of 
nanofertilizers in increasing the use efficiency of nutrients 
and water. Global water crisis and promising features of 
nano-fertilizers will be discussed in this study. Can nano-
fertilizers help in saving water through direct and/or indirect 
approaches? 
 
2. Global water crisis 

Approximately 3/4 of our planet's surface is covered 
by water, with a total around 1385.5 BCM (million cubic 
kilometers). The majority of such water is saltwater (97.3%), 
whereas only 2.7% is freshwater. These freshwater resources 
include frozen water in glaciers and polar ice caps (75.2%), 
while the rest of unfrozen freshwater represents groundwater 
(22.6%), atmospheric vapor and soil water (1.9%), and in 
aquatic bodies including lakes and rivers as 0.3% [24]. There 
is increasing demand for water along with increasing global 
population. On the global level, the availability of freshwater 
resources faces many challenges due to several factors such as 
anthropogenic activities, population growth, groundwater 
overexploitation, industrial disposal, chemical farming 
intensification, and climate change [24]. Under global climate 
change, there is a significant change in global water supplies 
due to the magnitude and frequency of extreme events 
including flooding and drought, which is needed for effective 
water governance [25]. It is well known that human needs a 
steady supply of clean water to live, but this is not available to 
all global population due to the global water crisis (Fig. 1). 
Several reasons can cause the global water crisis including 
climate change, natural disasters, war and conflict, 
wastewater, forced migration and the refugee crisis, and 
inequality/imbalance of power. 

Water scarcity could be defined as “a state of 
imbalance between the supply and demand of freshwater, 
where the demand for freshwater surpasses the available 
supply” [29]. Water scarcity can threaten the global 
sustainability of ecosystems [30], pose real limitations on the 
growth of economics and the social development [31]. It 
could be noticed also that many sustainable development 
goals (SDGs) are linked to the water scarcity including both 
direct and/or indirect approach [32]. Compared to the 
projected demand of water, it is expected to encounter a 40 % 
shortfall in its availability by 2030 [32]. Many researchers 
reported about the subjected solutions for the global water 
crisis, which can be listed in the following part: 
(1) Rooftop rainwater harvesting to mitigate domestic, 
drinking, and irrigation water requirements with focus on 
water resources management, rainwater harvesting structures, 
wastewater reuse, and groundwater replenishment [24],  

(2) Technology of solar stills as a reliable and sustainable 
solution for purification of water, and to provide accessible 
and clean water, especially under limited resources of energy 
and water scarcity [33],  

(3) Incorporating different solutions to alleviate water scarcity 

through multiple solutions on water scarcity including (i) 
unconventional water, (ii) using of inter-basin water transfer, 
and (iii) improving surface water quality [34], 

(4) Using the nexus of water, energy, food and are greenhouse 
gas emissions by considering the impacts of different 
management practices (mainly irrigation, and tillage) on the 
consumption of water and energy, as well as GHG emissions 
[35],  

(5) Technology of atmospheric water harvesting through 
condensing the atmospheric water vapor by radioactive cooling 
surfaces along with morphology optimization and sorption 
technology [36], 

(6) Freshwater harvesting using technology of solar-driven 
interfacial evaporation to produce clean water and wastewater 
treatment [37],  

(7) Harvesting technology of atmospheric water using sorbent 
prepared from sugarcane bagasse wastes based activated carbon 
[38], and 

(8) For the food-energy-water nexus, agri-voltaic systems (i.e., 
integration of agriculture with photovoltaic panels) can produce 
food, provide low carbon electricity, and conserve water on the 
same area of land [39]. 

 

3. Nano-fertilizers: promising features 

It is well known that excessive application of chemical 
fertilizers causes several environmental problems including 
disruption of soil mineral equilibrium, reducing soil fertility, and 
irreparable damage of soil health [40]. Nanofertilizers (NFs) 
could be defined as modified or synthesized forms of bulk 
(traditional) fertilizer materials through physical, mechanical, 
chemical or biological methods. Many distinguished features of 
nanofertilizers can be realized as smart fertilizers, including 
higher surface area, small particle sizes, easy penetration, high 
solubility, controlled release, and abiding duration [18,41]. In 
brief, certain salient features of NFs can be addressed through 
increasing the plant growth under stressful conditions after foliar 
and/or soil application of NFs, acting as a defensible basis for 
plant nutrients, increasing fertilizer use efficiency and, reducing 
soil/water pollution [18]. NFs can be applied through soil and 
foliar application, along with seed nano-priming, and then 
uptake by plants by certain pathways (Fig. 2). 

Based on different items, NFs can be classified into 
many categories based on their properties and composition, as 
reported by many researchers [22,40]. The selection of NF-type 
mainly depends on several factors related to soil conditions (pH, 
EC, OM, texture, etc.), cultivated crop (species, root exudates, 
etc.), nano-nutrient requirements (size, type, dose, etc.), and 
environmental issues (Fig. 3). Based on NF-composition, they 
can include nanostructured metal-based fertilizers, 
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nanostructured polymer-based fertilizers, nano-biofertilizers, 
nano-coated/nano-encapsulated fertilizers, nano-composite 
fertilizers, nano-chelates, and bio-based nanofertilizers [42-
44]. Based on NF-release mechanism, they may involve 
controlled-release nanofertilizers, slow-release nanofertilizers, 
and responsive nanofertilizers, whereas the following types 
can be addressed based on nutrient types; macronutrient-NFs, 

micronutrient-NFs, and complex nutrient NFs [20]. The 
common classification of nanofertilizers based on the synthesis 
method includes the physical, chemical, and biological 
approaches. Due to the ecotoxicological issue, the biological 
approach is preferable in agriculture and food sectors [19]. 

 

 

 
Fig. 1: Some facts on the global water crisis (Ref. [26-28], Sources: WHO 2020, 2023; FAO 2024; https://water.org/our-impact/water  
crisis/ accessed on 21.11.2024) source of images the following websites: https://www.flaticon.com/free-icon and https://www.veryicon.com/    
 

 
Fig. 2: Different methods of nanofertilizer application (part I, II, III) as well as the suggested mechanism of nano-nutrient uptake by plants (part 

IV) (adapted from Prokisch et al. [45]) 

 

https://water.org/our-impact/water
https://www.veryicon.com/
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Fig. 3: Different factors control uptake of nano-nutrients in nanofertilizers by plants (adapted from Prokisch et al. [45]) 

 
 
Table 1. Selected studies on the role of nano-based fertilizers under water stress 

Plant species  Applied dose Stress details Main impacts Ref. 
Pearl millet 
(Pennisetum 
glaucum (L.) R. Br.) 

Zn-NPs (20 ppm) 
less than 90 nm 

Stop irrigation from 
the 43 till 54 DAS 

Ameliorated stress (electron 
transport and 
phenomenological fluxes) 

[46] 

Rice (Oryza sativa 
L.) 

Nano-SiO2 (400 
ppm) 20–30 nm 

Reduced irrigation 
water by 35%  

Increased the yield and yield 
components 

[47] 

Quinoa 
(Chenopodium 
quinoa Willd.) 

Nano-biochar 2% 
(40–100 nm) 

60% from water 
requirements 

Increased leaf chlorophyll and 
seed protein content 

[48] 

Maize (Zea mays L.) O-Carboxymethyl 
chitosan- NPs (200 
nm) 

Air-dried seedlings 
in the oven for 80 
min 

Improved antioxidants, 
chlorophyll, and reduced 
peroxidation of lipids  

[49] 

Quinoa 
(Chenopodium 
quinoa Willd) 

Chelated nano-Si 
fertilizer (2 g L-1) 

Irrigation intervals 
from 14 to 28 days 

Alleviated stress by promoting 
yield and physiological 
properties 

[50] 

Rice (Oryza sativa 
L.) 

N-fertilizer nano-
hydrogel at a 0.175 
g N kg-1 soil 

Flooding 50% SP, 
30 mm submerged 
(extreme dryness) 

Improved physio-biochemical 
attributes, thereby increased 
grain quality 

 [51] 

Iranian sage (Salvia 
mirzayanii Rech. f. 
& Esfand) 

CeO2-NPs, 1000 ml 
L-1 (10-30 nm) 

Up to 25% of field 
capacity (FC) 

Supported re-watered and 
stressed growth plants and 
phytochemical attributes 

 [52] 

Soybean (Glycine 
max L.) 

Nano- Fe2O3; nano-
priming 300 ppm, 
foliar rate 15 ppm 

Irrigation at 50 % 
FC 

Boosted yield and its quality 
by improving photosynthesis 
and chlorophyll fluorescence  

 [53] 

Fava bean (Vicia 
faba L.) 

nano-TiO2 (15 ppm, 
21 nm) 

Withholding water 
supply foe 10 days 

Induced osmotic/oxidative, 
antioxidant defense system 

[54] 
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4. Nano-based fertilizers for saving water 

         Can nanofertilizers support plant growth and 
production under stress? On which base this ameliorative 
impact? What is the main mode of action? Can such 
nanofertilizers protect plants against water stress? To what 
extend can nanofertilizers protect plants again water stress? 
Many studies confirmed the role of NFs in enhancing plant 
tolerance against such stresses through many biochemical, 
physiological, and molecular mechanisms [23,44,46]. Along 
with this enhancement, there are some strategies for saving 
water by mitigation the water stress including direct and/or 
indirect methods (Table 1). 
 

The following approaches were reported on the 
role of nanofertilizers or nanoparticles-based fertilizers in 
saving water:  
1- Under water stress, applied nanofertilizers can induce 
plant physiological, morphological and molecular changes 
by improving content of pigments (i.e., antheraxanthin, 
chlorophyll, violaxanthin and zeaxanthin) and reducing non-
photochemical quenching. This approach was reported on 
nano-Fe2O3 [53], nano-Zn [46], and carbon nano-dots [23], 
2- Nanofertilizers can improve the yield and water use 
efficiency [55], and reduce consumed amount water leading 
to improve plant water productivity, protein of seeds and 
leaf chlorophyll content under water stress condition [48], 
3- Using of nanomaterials in removing pollutants from 
water resources as an important source for saving water by 
increasing the adsorption capacity of applied nanomaterials 
for studied pollutants [56], through the magnetic nano-
composite coagulant of pollutants in industrial wastewater 
[57], or treatment of algae -rich waters [58], or through the 
nano-bioremediation of soil and water [59],  
4- Protecting the groundwater from pollution through 
applied nano-biochar, which reduced leaching of nutrients 
by enhancing water retention capacity of such pollutants 
[60],  
5- Nano-sensors for water and humidity monitoring the 
human respiratory rates during various activities, e.g., 
coughing, running, standing and walking [61], or 
monitoring the water/wastewater pollution [62], and 
6- In general, the concept of nano-farming, which means 
application of nanotechnology in different farming practices 
also, can support the saving of water in agriculture [63-65]. 
 
5. Nanosensors for saving water 

It is well reported that nanotechnology has several 
applications in agriculture, which may impact directly 
and/or indirectly on managing and saving water through 
their nano-formulations such as nano-agrochemicals for 
crop improvement and nanosensors for the identification of 
such agrochemical residues and detecting plant diseases. 
Nanosensors are considered good tools for detecting 

nutrients/pollutants in water and soil, humidity or moisture, 
soil pH, pests, and pathogens to increase crop productivity 
[66]. Recently, many publications reported on the role of 
nanosensors in saving water through different approaches such 
as: 
1- Promising monitoring approach of water quality and safety 
as real-world applications for in-field or online water 
monitoring [67], 
2- Using a smartphone-assisted colorimetric detection strategy 
of organic pollutants (methyl orange) in environmental waters 
[68], 
3- Trapping of inorganic pollutants (heavy metal ions of Ag, 
Au, Al, Mn, Sn, and Zn) by gallium nitride nano-cone for 
scavenging the water environments [69], 
4- Application of smart irrigation management system for 
global food and water security [70], and  
5- Using the smart nano-agrochemical including 
nanofertilizers and nano-pesticides for more nutrient and/or 
water use efficiency [71]. 
 
6. Conclusions and future prospects 

Water is the main element for the life of human 
beings, which needs to protect, monitor, and conserve it. The 
applications of nanotechnology in water sector got a great 
concern due to many global issues such as global climate 
change and water crisis. Nanofertilizers are promising source 
in the agricultural production due to the distinguished features 
including the high surface area activity, high use efficiency, 
and slow release system. What is the role of nanofertilizers in 
water sector? Nanofertilizers can be a proper solution to 
overcome certain problems in such sector through saving 
water, purification, detecting the pollutants and nano-
remediation of water/wastewater. For the sustainable 
approach, the biological nanofertilizers are needed with focus 
on more studies in the water sector especially under global 
climate change. 
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